School of Engineering and Applied Science Building

Miami University, Oxford, OH

Technical Assignment 2

October 29, 2007

Jonathan Kirk

AE 481W - Senior Thesis

The Pennsylvania State University

Faculty Advisor: Dr. Andres Lepage

Table of Contents

Executive Summary	}
Existing Structural System	ŀ
Foundation4	ŀ
Floor System4	ł
Columns5	5
Lateral Resisting System6	5
Design Codes	;
Loads7	,
Alternative Floor System Comparison	}
Non-composite Lightweight Concrete Slab on Steel Frame)
Two-Way Slab with Drop Panels10)
Two-Way Post-Tensioned Flat Slab with Shear Caps11	
Precast Hollowcore Plank on Steel Frame12	2
Comparison Chart and Conclusions13	3
Appendices	ŀ
Appendix A – First Floor Plans14	ŀ
Appendix B – Non-composite Lightweight Concrete Slab on Steel Calculations 16	3
Appendix C – Two-Way Slab with Drop Panels Calculations	
Appendix D – Two-Way Post-Tensioned Flat Slab with Shear Caps Calculations 26	3
Appendix E – Precast Hollowcore Plank on Steel Frame Calculations)

Executive Summary

The purpose of this report is to research possible alternative floor framing systems that may have been used in lieu of the current composite concrete on steel frame system of Miami University's School of Engineering and Applied Science Building.

When analyzing the alternative floor systems, criteria such as weight of the system, depth of the structure, constructability, lead time, vibration, fireproofing, and relative cost were considered, and compared to the criteria performance of the existing structural system. The following four floor systems were analyzed as possible options:

- 1. Non-composite lightweight concrete slab on steel beams
- 2. Two-way slab with drop panels
- 3. Two-way post-tensioned flat slab with shear caps
- 4. Precast hollowcore plank on steel beams

After close review of each possible system, it would appear that precast hollowcore floor plank on steel girders is the best possible system for the building. The fact that it requires a long lead time is more than made up for in schedule time, as erection of the plank is by far the fastest option available, saving valuable labor cost. The plank will give superior acoustical performance in comparison to other systems, and vibration is improved over the existing system. The weight of this floor system is more than the current composite steel system, which will increase seismic loads, and will require further analysis to find the effects of this impact on the lateral resisting system. Most importantly though, the overall cost of this system is the lowest of all floors under review. This fact, combined with the other benefits makes hollowcore flooring the best option for this building.

Existing Structural System

• Foundation

The lower level of the parking garage is a 5" slab on grade with a minimum 28day compressive strength of 4500 psi, over 6" of granular subbase. It is reinforced with WWF 6x6 – W4.0xW4.0 wire mesh. The concrete columns, which carry the load from the main building above are supported by spread footings which range in size from 4'-0"x4'-0"x24" reinforced with (7)#5 bars each way to 9'-0"x9'-0"x42" reinforced with (15)#8 bars each way. The garage walls around the exterior are supported by 2'-0"x2'0" footings reinforced with (3)#9 top and bottom steel, while the wall footing running through the center of the garage is only 1'6" deep and reinforced with (2)#7 bottom bars. The School of Engineering and Applied Science Building's entrance plaza is a slab on grade with a minimum 28 day compressive strength of 4000 psi which varies by location from 5" thick reinforced with WWF 6x6 W4.0xW4.0 to 9" thick reinforced with #5 bottom bars at 12" O.C. and top WWF 6x6 W4.0xW4.0. The plaza is supported by drilled piers that range in size from 36" diameter, 12'-8" deep, to 60" diameter, 17'-4" deep. Grade beams run between the drilled piers and are typically 2'-0"x2'0". All footings, piers, and grade beams have a minimum concrete strength of 5000 psi.

• Floor System

o Upper Floors

The first, second and mechanical floor of the School of Engineering and Applied Science Building utilizes a composite floor system with a typical concrete slab of 3¹/₂" on 3" 18 gage composite metal deck with normal weight concrete of minimum 28-day strength of 4000 psi, and is reinforced with WWF 6x6 W2.9xW2.9. The most typical bay is 30'-0"x30'-0" where the deck spans over (3) 10' spans on W16x26 beams with (26) ³/₄" diameter, 5" headed shear studs, and are cambered 1½". The beams frame into W21x83 girders at third-points, which have (40) shear studs of equal dimensions, and are not typically cambered. Girders in areas with larger tributary areas, in the north side of the building are W24x84's. These girders are also part of the lateral resisting system in the East-West direction and are supported with partially restrained moment connections at the columns. The roof is a mansard roof around the perimeter, sloping at a 12-12 pitch until it flattens off through the central part of the building. The roof does not have a composite slab, and is built of 4" rigid insulation on 11/2" 20 gage wide rib roof deck, which spans on wide flange beams which are typically W8x10 on the pitched part of the roof, and are W10x12 or W12x16 in the central, flat area. The beams frame into girders which are generally W18x55.

o Garage

The middle and the upper levels of the garage, as well as the ground floor of the main building are comprised of a 2-way reinforced concrete slab with a minimum 28-day compressive strength of 5000 psi. The bay layout generally follows that of the columns above, typically 30'-0"x30'-0", from the main building to avoid the need for transfer slabs and girders. The middle and upper levels of the garage use a 9" flat slab with 10'-0"x10'-0"x8" drop panels at the columns. At the east end of the upper level, the slab turns into a 10" flat slab, and continues to turn into a 12" flat slab at ground floor, particularly on the northern half of the building. This is due to the fact that the live load on the ground floor is higher than anywhere else throughout the main building or garage. There are (3) transfer beams in this northern section of the main floor spanning north to south where the garage column layout doesn't exactly match that of the upper floors, which are 50" deep and are 36" or 48" wide. At the easternmost end of the building, there is a small section of slab where it is thickened to 14" to carry the some masonry walls.

• Columns

o Upper Floors

Columns supporting the first floor through the roof are rolled W12 shapes with a yield strength of 50 ksi. Most of the columns contribute to the moment frame in the East-West direction, which range in size from W12x40 to W12x136. Where the columns continue all the way to the main roof through the mechanical floor, they are spliced just above the mechanical floor level. The base plates of gravity columns typically $1\frac{1}{4}$ " – $1\frac{1}{2}$ " thick on 2" of non-shrink grout, with (4) anchor bolts embedded 16" into the ground floor concrete, and are assumed to act as pin connections. Columns acting as part of the moment frames or the vertical braces have heavier 2" – $2\frac{1}{4}$ " thick, much larger in area so that the anchor bolts can be placed outside of the columns' projected area, unlike the gravity columns, and are assumed to act as fixed connections.

o Garage

The concrete columns in the garage are typically 24"x24", and have specified concrete strengths of either 4500 psi or 5000 psi depending on the location, and hence load, on the column. Reinforcement in the columns varies from (4)#11 bars to (12)#11 bars and splice at the middle level of the garage. The number of dowels at the base of the columns follows the number of reinforcement bars in the column, and are embedded to the bottom of the spread footing and hooked, creating a fixed connection.

• Lateral Resistance System

• North-South Direction

The lateral system in the transverse (short) direction of the building consists of four single bay concentrically braced steel frames from the ground floor to the mechanical floor, of roughly the same size. There is only one cross brace at each of the three levels of the brace, sloping up from south-to-north, and are made of steel tubing, ranging in size from HSS8x8x¹/₄ to HSS10x10x¹/₂. Diagrams can be found in Appendix A of this report. For lateral resistance from the mechanical floor to the roof, the mansard roof around the perimeter helps to brace the roof, but is helped by four single-span moment frames, which frame into the column's weak bending axis.

East-West Direction

The longitudinal (long) direction of the building utilizes an ordinary moment frame system. Two of the frames in the southern half of the building run the full length of the main building, and are the only two lateral resisting elements at the upper floors where the building steps back at the 2nd floor level. The ground and 1st floor also have four additional, shorter moment frames, two on each side of the rear entrance plaza at the center of the building. The moment frames use a partially restrained moment connection that has plates bolted to the flanges, which then are welded with full-penetration welds into the columns supporting the beams.

Design Codes

The School of Engineering and Applied Science Building was designed using the 2002 Ohio Building Code (OBC) with reference to ASCE 7-98 for building load determination procedures. ACI 318-98 was used to design the concrete portions of the structure, and concrete masonry construction was designed using ACI 530.1, Specifications for Masonry Structures, and construction specification section 04810. The 1992 edition of AISC's Code of Standard Practice for Steel Buildings and Bridges, as modified by the construction documents, was used for design of steel members, and ANSI/AWS Structural Welding Code – Steel D1.1 was used for design of welds.

This report will use the more recent IBC 2006 with reference to ASCE 7-05 for building loads. ACI 318-05, Building Code Requirements for Structural Concrete, and the Load Resistance Factored Design procedure from the 13th edition of AISC's Manual of Steel Construction will be used for design of the concrete and steel structural members, respectively.

Design Loads

•	Dead I	oads on	Existing	Structural	System
---	--------	---------	----------	------------	--------

Item	Weight
Concrete (Normal Weight)	150 pcf
Typical Floor	62.5 psf
Upper and Middle Garage 9" Slab	112.5 psf
Ground Floor 10" slab	125 psf
Ground Floor 12" slab	150 psf
Metal Deck	2 psf
Steel Framing	8 psf
Ceiling and Mechanical Allowance	
Typical Floor	15 psf
Mechanical Floor	25 psf
Roof	10 psf
Garage	10 psf
Partition Allowance	10 psf
Roof Materials	
4" Rigid Insulation	6 psf
Roof Membrane	1 psf
1/2" Gypsum Board	2 psf

• Live Loads

It is worthy to note that ASCE 7-05 does not specify live loads for labs such as the ones within the School of Engineering and Applied Sciences Building, which is what the majority of the space within the building is designated for. The designer chose to use a uniform load of 100 psf for upper level labs and 125 psf for labs at ground floor, which is what this report will use in the analysis.

Area	Design Live Load
Typical Floor	100 psf
Labs at Ground Level	125 psf
Mechanical Equipment Rooms	150 psf
Plaza	100 psf
Roof	25 psf
Parking Decks	50 psf
PSE Basement at Upper Garage Level	125 psf
Utility Tunnel	250 psf + 360 psf overburden

Alternative Floor Framing Systems

The structural layout of The School of Engineering and Applied Science Building is primarily comprised of 30'x30' bays, which gives multiple different floor systems a chance of being considered for the final design. Since the building is only four stories high and there are no height limitations to conform to, the structure depth is not nearly as important as it may be with very tall high rises. The current system meets many of the primary goals of the design and gives a very open, unrestricted floor plan that allows for some of the large laboratories. A typical bay of the composite system is shown below, which was the basic bay used in design of the alternative systems. An overall floor plan for the first floor can be viewed in Appendix A.

This section will summarize the results of the design and compare the advantages and disadvantages of each alternative floor system under consideration. A graph comparing all factors and conclusions may be found at the end of the individual analyses.

Typical Bay Framing Diagram

• Non-composite Lightweight Concrete Slab on Steel Frame

This system is nearly identical to the existing floor system in the building, with the same basic bay layout, but does not utilize the possible composite action that the concrete slab provides in the composite system. In an effort to actually reduce the weight of the structure, an analysis using lightweight (115 pcf) concrete was used. Using the United Steel Deck design manual, the slab depth can actually be reduced from the current 6.5" with the more recent load factors from the original building design. An even more effective system may be to use the lightweight concrete compositely with the steel frame.

Diagram of 2" LOK-Floor (Note: shear studs shown here are not used)

• Advantages

Construction and fabrication of steel members of a non-composite slab is simpler than a composite system since steel shear studs are not needed. Using lightweight concrete and the thinner slab, the dead load of the structure is significantly reduced, and will lower seismic loads, and hence lateral resisting elements' sizes.

• Disadvantages

Steel beam systems in general offer the least vibration resistance, especially when not used compositely with concrete, which may be a deterrent in lab spaces. Steel fabricators need a long lead in time. Fireproofing of steel members is required. Lightweight concrete is also more expensive than normal weight concrete.

• 2-Way Slab with Drop Panels

This is the base structural system used in the below ground parking garage and the ground floor. It utilizes mild reinforcing in both directions with drop panels only rather than having beams run in between each column as in a waffle slab system. It was determined that the irregularity of the bay layout did not lend itself well to the direct design method, so an equivalent frame analysis of a frame in the north-south direction was analyzed to find maximum design moments. It is worthy to note that the 36' exterior bay required a 3" thicker slab than the rest of the building. If the exterior columns were moved in 6', a cantilever slab may be used for the end span, but supporting the wall may prove to be difficult. A rotated diagram of frame under investigation along column line 2 is shown here.

• Advantages

A concrete floor has a much shallower structure depth than the existing steel system, which allows more room mechanical equipment. A significant reduction in vibration is achieved, which may be beneficial for the laboratories. Also, having the same structural system as the garage and ground floor simplifies the construction of the building and provides for an easier transfer of loads to the foundation.

• Disadvantages

The drop panels make routing mechanical chases more difficult than a flat plate slab, which can be an issue. They are also rather unsightly and have potential to disrupt interior designs and partition walls. The increased column size will also take away from usable floor space, and may change the clear width in hallways. The cost of the floor system is relatively high because of the very complicated formwork of the system, and will also add time to the overall schedule of the project. However, the biggest disadvantage of this system is its weight, over 130 psf. This will dramatically increase the magnitude of seismic loads on the building, which would need to be resisted by a new lateral system, either with shear walls or a moment frame within the slab and columns.

• 2-Way Post-Tensioned Flat Slab with Shear Caps

A post-tensioned slab is typically used in an effort to have the thinnest slab depth possible, while reducing deflections of concrete floors on long spans due to the upward camber caused by the prestressing force. Banded tendons run in the north-south direction, where span length frequently changes as seen in the design of the two-way mild reinforced slab, and uniformly spaced tendons are run in the east-west direction along each span. Due to the way these tendons are placed, it is desirable to have the same depth of slab throughout the building, unlike the mild reinforced system, where it is feasible to have an increased slab depth where necessary in larger spans.

• Advantages

A post-tensioned slab has the thinnest structural depth of all alternative floor systems under consideration, which decreases the overall building height. Also, superior serviceability performance is obtained due to the effect of the prestressing tendons in the slab.

• Disadvantages

The disadvantages of this system are very similar to those of the two-way mild reinforced slab. For these large spans, a flat plate slab with no drop panel or shear caps is uneconomical due to the added cost of shear reinforcing around the column to protect against punching shear. Shear caps, or column capitals, may have adverse effects on routing mechanical equipment and can interrupt partition walls, making framing of them difficult. Construction of a PT slab can be difficult and time consuming depending on the contractor's familiarity with the system.

• Precast Hollowcore Plank on Steel Frame

Hollowcore floor plank cross sections vary from one precast manufacturer to another, so design of these members is not an industry standard, and is typically performed by the precaster's engineering department. For the purpose of this report, Nitterhouse Concrete Products, Inc.'s published load tables have been used to select the appropriate members within their product line. A cast-in-place concrete topping was also chosen to be used in the design, which will be thinner at midspan of the planks, acting as a leveling coat to hide the inherent camber in the members. When bearing on steel beams, plank typically placed on the top flange and grouted at the joint, but this unnecessarily increases the depth of the floor. A girder slab system can be used where a custom steel beam with a narrow top flange so that the plank may be dropped in and set on the bottom flange, but then the beam cannot be used in a moment frame. To use achieve this same effect with standard wide flange shapes, a steel angle can be welded to each side of the beam web, where the long leg sticks out past the edge of the beam's flange, and the hollowcore floor plank can bear on the angle. A diagram is shown here.

• Advantages

The biggest advantage to using precast floor planks is the ease and speed of erection of the floor system. No formwork is required and concrete is already fully cured when they arrive. The same base structural moment frame can be used as in the existing system. The planks eliminate the need for intermediate beams within the bay, which allows greater freedom for the placement of mechanical chases. The cores lend superior acoustical properties to the floor in comparison with other floor systems.

• Disadvantages

A much longer lead time is needed to manufacture the members, but the time saved in on site construction more than makes up for this. This system has the thickest "slab" of any of the systems under consideration.

• Comparison Chart

System	Composite Steel (Existing)	Non- composite LWC Slab on Steel Frame	2-Way Slab w/ Drop Panels	2-Way Post- Tensioned Flat Plate Slab w/ Shear Caps	Hollowcore Plank on Steel Frame
Weight (psf)	71	54	131	128	96
Slab Depth (in)	6.5	5.25	9.5	10.25	12
Largest Depth (in)	33.5	26.25	18.5	10.25	29
Column Size (in)	W12	W12	24x24	24x24	W12
Construction Difficulty	Medium	Medium	Hard	Hard	Easy
Lead Time	Medium	Medium	Short	Short	Long
Formwork	Little	Little	Yes	Yes	None
Additional Fireproofing	Yes	Yes	No	No	Some
Lateral System Effects	N/A	None	Concrete Moment Frame or Shear Walls	Shear Walls	Little
Relative Vibration	High	High	Low	Low	Medium
Foundation Impact	-	None	Little	Little	Little
Cost per square foot					
Materials	\$14.40	\$16.61	\$7.64	\$10.62	\$10.72
Labor	\$6.26	\$7.73	\$8.10	\$8.01	\$3.15
Total	\$20.66	\$24.34	\$15.74	\$18.63	\$14.87
Viable Alternative	-	Yes	No	No	Yes
Further Study	-	Yes	No	No	Yes

Conclusions

Each alternative floor framing system clearly has its own unique advantages and disadvantages. The column grid was able to remain unchanged, and the foundation system should simply need to be redesigned for the different loads on each system, making those effects have a negligible impact on the selection of the optimal system. Based on the system selected, vibration was clearly not a governing criterion, though increased serviceability in other systems can be achieved. Changing to a concrete slab system would require a different lateral force resisting system, which may have a severely adverse effect on the architectural freedom in floor plan design if shear walls are used. Also, the increased column size may cause problems near the hallways where minimum clear widths are required by the ADA. The most important factor in floor system selection is cost and length of schedule and a precast hollowcore floor is the best system for both of these criteria.

Appendix A – Plans and Diagrams

First Floor Framing Plan – Area 'A' (West half of building)

KEYPLAN

⟨]∎

AREA 'B'

FRAMING PLAN

FL OOR

RSI W

€

.....

0

•

۲

•

ሐ

œ

First Floor Framing Plan - Area 'B' (East half of building)

٩

ł

1

Ф

.

3

<u>o</u>-

۵-

0

٩

3

õ

ð

۲

.

٢

Appendix B – Non-composite Lightweight Concrete Slab on Steel Frame Calculations

 $P_{36}^{36} = 15' \left[.771 \times 15 + 1.00 \times 16' \right] = 26.57^{k}$ $P_{36}^{36} = \frac{18}{15} \left(26.57 \right) = 31.88^{k}$ $P = 26.57 + 31.88 = 58.45^{k}$ 1.5' > 2 (58.45) (20)2(15)2 (3(10)(30) - 3(10)(15) - (20)(15)) (144#2) => I > 967.4 in 4 = controls LIVE LOAD A AL = 1/360 = 1.0" $1.0"7, 2\frac{(33^{k})(20)^{2}(15)^{2}}{((2400))^{2}(30)^{2}}(3(10)(30) - 3(10)(15) - (20)(15))(1444\frac{10^{2}}{42})$ =) I> 819.3 in4 SELECT W21×68 @Lo=10': 0 Mn = 600' > 555.5" 0KV QLo=10': 0 Mn = 531' > 277.8' 0KV I = 1480in > 967.4'n4 0KV NOTE: THIS GIRDER IS DESIGNED FOR GRAVITY LOADS ONLY, BUT IS USED IN A MOMENT FRAME TO RESIST LATERAL LOADS IN THE EAST - WEST DIRECTION. DESIGN OF GIRDER MAY BE CONTROLLED BY THESE LATERAL LOADS, WHICH WOULD REQUIRE FURTHER ANALYSIS

2 x 12" DECK F_y = 33ksi f' = 3 ksi 115 pcf concrete

The Deck Section Properties are per foot of width. The I value is for positive bending (in.4); t is the gage thickness in inches; w is the weight in pounds per square foot; S_p and S_n are the section moduli for positive and negative bending (in.³); R_b and φV_n , are the interior reaction and the shear in pounds (per foot of width); studs is the number of studs required per foot in order to obtain the full resisting moment, φM_n .

	_
The Composite Properties are a list of values for the composite slab. The slab depth is the distance from the	
bottom of the steel deck to the top of the slab in inches as shown on the sketch. U.L. ratings generally refer to the cover over the top of the deck so it is important to be aware of the difference in names. ϕM_{rrl} is the factored resisting moment provided by the composite slab when the "full" number of studs as shown in the upper table are in place; inch kips (per foot of width). A_c is the area of concrete available to resist shear, in. ² per foot of width. Vol. is the volume of concrete in	30
ft. ³ per ft. ² needed to make up the slab; no allowance for frame or deck deflection is included. W is the concrete weight in pounds per ft. ² . S _e is the section modulus of the "cracked" concrete composite slab; in ³ per foot of width. I _w is the average of the "cracked" and "uncracked" moments of inertia of the transformed composite slab; in ⁴ per foot of width. The I _w transformed section analysis is based on steel; therefore, to calculate deflections the appropriate modulus of elasticity to use	
is 29.5 x 10 ⁶ psi. ϕM_{no} is the factored resisting moment of the composite slab if there are <u>no studs</u> on the beams (the deck <u>is attached</u> to the beams or walls on which it is resting) inch kips (per foot of width). ϕV_{at} is the factored vertical shear resistance of the composite system; it is the sum of the shear resistances of the steel deck and the concrete but is not allowed to exceed $\phi 4(f_c)^k A_c$; pounds (per foot of width). The next three columns list the maximum unshored spans in	10
feet; these values are obtained by using the construction loading requirements of the SDI; combined bending and shear, deflection, and interior reactions are considered in calculating these values. A_{wwr} is the minimum area of welded wire fabric recommended for temperature reinforcing in the composite slab; square inches per foot.	0

				DECK PRO	DPERTIES	;			
Gage		w	As		s	s,	R	¢۷,	studs
22	0.0295	1.5	0.440	0.338	0.284	0.302	714	1990	0.43
20	0.0358	1.8	0.540	0.420	0.367	0.387	1010	2410	0.52
19	0.0418	2.1	0.630	0.490	0.445	0.458	1330	2810	0.61
18	0.0474	2.4	0.710	0.560	0.523	0.529	1680	3180	0.69
16	0.0598	3.1	0.900	0.700	0.654	0.654	2470	3990	0.87

					CC	omposi	TE PR	OPERTI	ES				
	Slab	фМ _л	Ą.	Vol.	w	S _c	l _{av}	φM _{no}	φV _{nt}	Max. u	nshored s	pans, ft.	Aww
	Depth	in.k	inž	ft³/ft²	psf	in ³	in ³	in.k	lbs.	1span	2span	3span	
	4.50	40.27	32.6	0.292	34	1.00	4.4	28.13	4270	6.32	8.46	8.56	0.023
	5.00	46.44	37.5	0.333	38	1.18	6.0	33.12	4610	6.03	8.09	8.19	0.027
O	5.25	49.53	40.0	0.354	41	1.27	6.9	35.69	4790	5.90	7.93	8.02	0.029
5	5.50	52.61	42.6	0.375	43	1.36	7.9	38.29	4970	5.77	7.77	7.86	0.032
<u>a</u>	6.00	58.78	48.0	0.417	48	1.55	10.1	43.58	5340	5.55	7.49	7.58	0.036
5	6.25	61.87	50.8	0.438	50	1.65	11.3	46.26	5540	5.45	7.36	7.45	0.038
N	6.50	64.95	53.6	0.458	53	1.75	12.7	48.97	5730	5.36	7.24	7.32	0.041
2	7.00	71.12	59.5	0.500	58	1.94	15.7	54.44	6150	5.18	7.01	7.10	0.045
	7.25	74.21	61.9	0.521	60	2.04	17.4	57.20	6310	5.10	6.91	6.99	0.047
	7.50	77.29	64.3	0.542	62	2.14	19.2	59.97	6480	5.05	6.81	6.89	0.050
	4.50	48.60	32.6	0.292	34	1.20	4.8	33.77	4560	7.42	9.71	10.03	0.023
	5.00	56.18	37.5	0.333	38	1.42	6.5	39.80	5030	7.07	9.28	9.59	0.027
l 🗹	5.25	59.96	40.0	0.354	41	1.53	7.4	42.91	5210	6.91	9.09	9.39	0.029
2	5.50	63.75	42.6	0.375	43	1.64	8.5	46.05	5390	6.76	8.91	9.20	0.032
1 🛱	6.00	71.32	48.0	0.417	48	1.87	10.9	52.47	5760	6.49	8.57	8.86	0.036
0,	6.25	75.11	50.8	0.438	50	1.99	12.2	55.73	5960	6.37	8.42	8.70	0.038
0	6.50	78.90	53.6	0.458	53	2.10	13.7	59.02	6150	6.26	8.27	8.55	0.041
2	7.00	86.47	59.5	0.500	58	2.34	16.9	65.67	6570	6.05	8.00	8.27	0.045
	7.25	90.26	61.9	0.521	60	2.46	18.7	69.03	6730	5.95	7.87	8.14	0.047
	7.50	94.05	64.3	0.542	62	2.58	20.6	72.41	6900	5.89	7.75	8.01	0.050
	4.50	55.85	32.6	0.292	34	1.38	5.1	38.67	4560	8.35	10.55	10.91	0.023
	5.00	64.68	37.5	0.333	38	1.63	6.9	45.61	5240	7.94	10.10	10.43	0.027
<u>e</u>	5.25	69.10	40.0	0.354	41	1.75	7.9	49.19	5590	7.76	9.89	10.22	0.029
5	5.50	73.52	42.6	0.375	43	1.88	9.0	52.83	5790	7.59	9.69	10.01	0.032
1 2	6.00	82.35	48.0	0.417	48	2.15	11.6	60.25	6160	7.29	9.33	9.64	0.036
Ĩ	6.25	86.77	50.8	0.438	50	2.28	13.0	64.02	6360	7.15	9.16	9.47	0.038
<u> </u>	6.50	91.19	53.6	0.458	53	2.42	14.5	67.83	6550	7.02	9.00	9.30	0.041
· ·	7.00	100.03	59.5	0.500	28	2.69	17.9	70.40	5970	6.78	8./1	9.00	0.045
	7.20	104.44	61.9	0.521	00	2.03	19.0	/9.42	7130	0.07	0.07	0.00	0.047
	7.50	62.09	64.3 22.0	0.042	24	1.52	21.8	83.33	1300	6.59	8.44	11 71	0.000
	5.00	72.04	27.5	0.292	34	1.00	7.2	42.99	5240	9.20	10.9/	11.71	0.023
a	5.00	77.02	40.0	0.353	/11	1.01	92	54.72	5590	9.54	10.04	10.07	0.027
5	5.50	82.00	40.0	0.375	/13	2 10	95	58.78	5950	8 35	10.02	10.57	0.023
ð	6.00	91.95	42.0	0.373	40	2.10	12.1	67.07	6530	8.01	10.41	10.76	0.032
5	6.00	96.93	50.8	0.417	50	2.53	13.6	71.00	6730	7.86	9.8/	10.00	0.038
6	6.50	101.91	53.6	0.458	53	2.69	15.2	75.55	6920	7.71	9.68	10.00	0.041
	7.00	111.87	59.5	0.500	58	3.00	18.8	84.17	7340	7.44	9.36	9.67	0.045
•	7.25	116.85	61.9	0.521	60	3.16	20.7	88.52	7500	7.32	9.21	9.52	0.047
	7.50	121.83	64.3	0.542	62	3.31	22.8	92.91	7670	7.24	9.07	9.38	0.050
	4.50	62.08	32.6	0.292	34	1.88	6.0	42.99	4560	10.49	12.57	12.99	0.023
	5.00	72.04	37.5	0.333	38	2.22	8.0	50.72	5240	9.96	12.03	12.43	0.027
0	5.25	77.02	40.0	0.354	41	2.40	9.2	54.72	5590	9.72	11.78	12.18	0.029
5	5.50	82.00	42.6	0.375	43	2.58	10.5	58.78	5950	9.50	11.55	11.94	0.032
<u> </u>	6.00	91.95	48.0	0.417	48	2.94	13.4	67.07	6700	9.11	11.13	11.50	0.036
0	6.25	96.93	50.8	0.438	50	3.13	15.0	71.29	7090	8.93	10.94	11.30	0.038
9	6.50	101.91	53.6	0.458	53	3.32	16.8	75.55	7490	8.76	10.75	11.11	0.041
T	7.00	111.87	59.5	0.500	58	3.71	20.6	84.17	8150	8.45	10.40	10.75	0.045
	7.25	116.85	61.9	0.521	60	3.90	22.8	88.52	8310	8.31	10.24	10.59	0.047
	7.50	121.83	64.3	0.542	62	4.10	25.1	92.91	8480	8.22	10.09	10.43	0.050

2" LOK-FLOOR 38

2 x 12" DECK F_y = 33ksi f'_e = 3 ksi 115 pcf concrete

						L,	Unifo	m Live	Loads	s, psf *					
	Slab Depth	φMn in.k	6.00	6.50	7.00	7.50	8.00	8.50	9.00	9.50	10.00	10.50	11.00	11.50	12.00
	4.50	40.27	400	370	315	270	235	205	180	160	140	125	110	100	90
B	5.00	46.44	400	400	365	315	270	240	210	185	165	145	130	115	105
a l	5.50	52.61	400	400	400	355	310	270	235	210	185	165	150	130	120
	6.00	58.78 61.87	400	400	400	400	345	300	265	235	210	185	165	150	135
5	6.50	64.95	400	400	400	400	380	335	295	260	230	205	185	165	145
	7.00	71.12	400	400	400	400	400	365	320	285	250	225	200	180	160
Ð	4.50	48.60	400	400	400	335	335	200	225	200	205	155	140	145	130
De la	5.25	59.96	400	400	400	400	360	315	275	245	220	195	175	155	140
ő	5.50	63.75	400	400	400	400	380	335	295	260	230	205	185	165	150
0	6.25	75.11	400	400	400	400	400	395	345	310	275	245	220	200	180
2	6.50	78.90	400	400	400	400	400	400	365	325	290	255	230	210	185
	4.50	86.47 55.85	400	400	400	385	335	400 295	400 260	230	205	280	255	230	130
e e	5.00	64.68	400	400	400	400	390	345	300	270	240	215	190	175	155
ă	5.25	69.10	400	400	400	400	400	365	325	285	255	230	205	185	170
ס	6.00	82.35	400	400	400	400	400	400	385	345	305	245	245	200	200
9	6.25	86.77	400	400	400	400	400	400	400	360	320	290	260	235	210
-	7.00	100.03	400	400	400	400	400	400	400	400	340	335	300	245	245
	4.50	62.08	400	400	400	400	375	330	290	260	230	205	180	155	135
1 8	5.00	72.04	400	400	400	400	400	385	340	300	270	240	220	<u>195</u> 210	180
a l	5.50	82.00	400	400	400	400	400	400	390	345	305	275	250	225	205
	6.00	91.95	400	400	400	400	400	400	400	385	345	310	280	250	230
~	6.50	101.91	400	400	400	400	400	400	400	400	385	345	310	280	255
	7.00	111.87	400	400	400	400	400	400	400	400	400	380	340	310	280
Ð	4.50	72.08	400	400	400	400	400	330	290 340	300	230	205	220	155	135
l B	5.25	77.02	400	400	400	400	400	400	365	325	290	260	235	210	190
5	5.50	82.00 91.95	400	400	400	400	400	400	390	345	305	275	250	225	205
9	6.25	96.93	400	400	400	400	400	400	400	400	365	325	295	265	240
~	6.50	101.91	400	400	400	400	400	400	400	400	385	345	310	280	255
	4.50	28.13	300	250	215	180	155	135	120	105	90	80	70	60	55
Ð	5.00	33.12	355	295	250	215	185	160	140	125	110	95	85	75	65
á	5.25	35.69	<u></u>	345	270	235	200	1/5	150	135	115	105	<u> </u>	85	70
D	6.00	43.58	400	395	335	285	245	215	185	165	145	130	115	100	90
ាន	6.25	46.26	400	400	355	305	260	230	200	175	155	135	120	105	<u>95</u> 100
	7.00	54.44	400	400	400	360	310	240	235	205	185	160	145	125	115
đ	4.50	33.77	365	305	260	225	195	170	145	130	115	100	90	80	70
ğ	5.25	42.91	400	390	335	285	245	215	190	165	145	130	115	105	90
6	5.50	46.05	400	400	360	305	265	230	205	180	160	140	125	110	100
0	6.00	55.73	400	400	400	375	305	265	235	205	195	170	145	130	120
2	6.50	59.02	400	400	400	395	345	300	265	230	205	180	160	145	130
	7.00	65.67 38.67	400	<u>400</u> 355	<u>400</u> 300	<u>400</u> 260	<u>385</u> 225	<u>335</u> 195	<u>295</u> 170	<u>260</u> 150	230	205 120	<u>180</u> 105	<u>160</u> 95	<u>145</u> 85
e e	5.00	45.61	400	400	360	310	265	235	205	180	160	140	125	115	100
ă	5.25	49.19	400	400	385	330	290	250	220	<u>195</u> 210	175	155	135	125	110
5	6.00	60.25	400	400	400	400	355	310	270	240	215	190	170	150	135
6	6.25	64.02	400	400	400	400	375	330	290	255	225	205	180	160	145
	7.00	75.53	400	400	400	400	400	390	345	305	240	215	215	1/5	175
	4.50	42.99	400	395	340	290	255	220	195	170	150	135	120	110	95
5	5.00	50.72	400	400	400	345	300	260	230	205	180	160	145	130	115
a l	5.50	58.78	400	400	400	400	350	305	270	235	210	190	170	150	135
m i	6.00	67.07	400	400	400	400	400	350	305	270	240	215	195	175	155
18	6.50	75.55	400	400	400	400	400	395	345	305	275	245	220	195	175
	7.00	84.17	400	400	400	400	400	400	390	345	305	275	245	220	200
Ð	4.50	42.99	400	400	400	345	300	260	230	205	180	160	145	130	115
Be	5.25	54.72	400	400	400	375	325	285	250	220	195	175	155	140	125
ő	5.50	58.78	400	400	400	400	350	305	270	235	210	215	170	150	135
9	6.25	71.29	400	400	400	400	400	370	325	290	255	230	205	185	165
-	6.50	75.55	400	400	400	400	400	395	345	305	275	245	220	195	175
	7.00	04.17	400	400	400	400	400	400	390	340	305	215	240	220	200

* The Uniform Live Loads are based on the LRFD equation $\phi M_n = (1.6L + 1.2D)l^2/8$. Although there are other load combinations that may require investigation, this will control most of the time. The equation assumes there is no negative bending reinforcement over the beams and therefore each composite slab is a single span. Two sets of values are shown; ϕM_{nf} is used to calculate the uniform load when the full required number of studs is present; φM_{no} is used to calculate the load when no studs are present. A straight line interpolation can be done if the average number of studs is between zero and the required number needed to develop the "full" factored moment. The tabulated loads are checked for shear controlling (it seldom does), and also limited to a live load deflection of 1/360 of the span.

An upper limit of 400 psf has been applied to the tabulated loads. This has been done to guard against equating large concentrated to uniform loads. Concentrated loads may require special analysis and design to take care of servicibility requirements not covered by simply using a uniform load value. On the other hand, for any load combination the values provided by the composite properties can be used in the calculations.

Welded wire fabric in the required amount is assumed for the table values. If welded wire fabric is not present, deduct 10% from the listed loads.

Refer to the example problems for the use of the tables.

Appendix C – Two-Way Slab with Drop Panels Calculations

TWO-WAY SLAB WITH DROP PANELS Design Drop Panel for punching shear : @ col c2: 12.5 slab : $W_{ij} = 1.2 \left(\frac{12.5}{12} \right) (150) + 25 + 1.6 (100) = 377.5 part$ 9.5 shb: Wu = 1.2 (9.5) (150) +257 + 1.6 (100) = 332.5 pot $V_{v} = (30')(\frac{36'}{2})(\frac{377.5}{1000}) + (30')(\frac{30'}{2})(\frac{332.5}{1000}) = 353.5k$ 353.5 × 0.75/4) 5000 (4/24) d + 412) => d > 11.7" If # 8 bars used! hmin = 11,7" + .75" + 1" + 1 = 13.95" = Use 14" Design Drop Panel for Panel Shear: Assume 10' × 10' drop panels Vu = (30')(36') (377,5) = 203.9k OVe = OZIF. bud = VU 203,9 5 0,75(2) 5000 (120") d => d> 16.0" If #8 bars used : hmin = 16.0" + .75" + 1" + 1" = 18.25" => Use 18.5" controls J Drop panel depth = 18.5" - 9.5" = [9" @ 9.5" sho = 18.5" - 12.5" = [6"] @ 12.5" sho

FRAME IN N-S Directions (com)
2420(c): torsional stiffwars:

$$V_{t} = \frac{9E_{t}C}{42(1-976)^{3}}$$
, total wight of dig paral
 $C = (1 - 0.63\frac{x}{9})(\frac{x^{3}y}{3}) = (1 - 0.63(\frac{x}{24}))(\frac{(0.85(24))}{3}) = 26,055$ in⁴
 $V_{t} = \frac{9(20,05)}{3(12)(1-977)} = 6.071.9 Ec$
Equiv. Col. stiffwars:
 $\frac{1}{V_{e}} = \frac{1}{V_{e}} + \frac{1}{V_{e}} = \frac{1}{18536Ec} + \frac{1}{041.9Ec}$
 $V_{e} = \frac{3(20,05)}{250(2+371)(8-571)} = 0.400$
 $DF^{4.4} = \frac{558.0E_{e}}{(285.6+371)(8+2)} = 0.400$
 $DF^{4.4} = \frac{558.0E_{e}}{(285.6+371)(8+25)} = 0.238$
 $DF^{6.4} = \frac{558.0E_{e}}{(285.6+371)(8+371)(8)Ec} = 0.238$
 $DF^{6.4} = DF^{6.7} = \frac{215.6Ec}{(285.6+371)(8+371)(8)Ec} = 0.401$
 $DF^{4.4} = DF^{6.7} = \frac{215.6Ec}{(285.6+371)(8+371)(8)Ec} = 0.401$
 $DF^{4.4} = DF^{6.7} = \frac{571.6Ec}{(285.6+371)(8+371)(8)Ec} = 0.401$
 $DF^{4.4} = \frac{544.3Ec}{(284.5+371)(8+371)(8)Ec} = 0.435$
 $DF^{6.4} = \frac{544.3Ec}{(284.5+371)(8+371)(8)Ec} = 0.435$
 $DF^{6.4} = \frac{544.3Ec}{(284.5+371)(8+371)(8)Ec} = 0.4522$
 $DF^{1.4} = \frac{544.3Ec}{(284.5+371)(8+371)(8)Ec} = 0.452$
 $DF^{1.4} = \frac{544.3Ec}{(284.5+371)(8+371)(8)Ec} = 0.4516$
 $DF^{1.4} = \frac{544.3Ec}{(284.5+371)(8+371)(8)Ec} = 0.5766$
FixeD END MomENTS
 36^{6} Span : $M_{0} = 377.5 \text{ pse}(20)^{1} = 11.325 \text{ with}$
 $M_{0} = \frac{(1.13225)(32)^{2}}{12} = 12.23.1^{14}$
 $M_{0} = \frac{(1.1325)(16)^{3}}{12} = -748.1^{12}$
 16^{6} Span : $M_{0} = \frac{(4.745)(16)^{3}}{12} = -748.1^{12}$
 16^{6} Span : $M_{0} = \frac{(4.745)(16)^{3}}{12} = 212.8^{14}$
 18^{6} Span : $M_{0} = \frac{(4.745)(16)^{3}}{12} = 212.8^{14}$

TITI	M	OMEN	TD	ISTRIE	UTIO	N:				
Col. Line	A	A)	(5	(1	3	R	>	(A)
DE	.600	,455	.241	238	.461	.461	.238	.252	.430	576
FEMAR	1223.1	+1223.1	-748.1	+748.1	-212.8	1212.8	-748.1	+748.1	-249.3	+2693
Digtr.	+ 733.9							IL		
CASTY OVER		+366.9								
Distr.		- 383.1	-202.9	1.0.0	i a seli					
Cherry war	-191.5			-101.4						1 3 3
Distr.				-103.3	-2000					
Carry over			-51.6			-100.0				
Distr.						+292.9	+151.Z			
Larry over					+146.4			+75.6		
Distr.	1/1				T- Ask			- 139,7	-238.4	
Larry over							-69.9		1. 8	-119.2
Distr			1.1.1					-		-86.5
Carryonel				1					-43.2	
D	2			t			1	+10.9	+18.6	
CO							+5,4			+9.3
D						+29.7	+1514			
60					+14.9			+7.7		
D				-38.4	-74.4					
00			-19.2	1		-37.2				
D		+32.2	+17.1					14		
CO	46.1	dealard		+8.5						
D	+105.2									
CO		+52.6						1		
D		-23.9	-12.7				- A			
CO	-12.0			-6.3						
D				-0.5	-1.0	2		K		
Co			-0.3			-0.5				
D					1	+17,4	+9.0			
CO					+6.9			+4,5	i in	
D								-3.1	-5.2	
00							1-1,5			-2.6
D									1.0	-3.9
CO					- Party				-1.9	
D				(10.5	+0.8	10/1
0					-		+0.2			10.4
D				1		+0.6	+0.3	- 00		
0				1.1.1	+0.3			+0.2		
D	-			-1.7	-3.3	1-7	-	1		
00		INF	-0.9	1		-1.+		(-	
D		40.5	+0.5	1.0.1						
0	+0.)		-	+0.1	-					
D	++.0	120							-	
10		-1 ·	-09		-					
Distr	0.5	lob	-0.6	-DI-						
Carryover	-0.0		-	0.7		-				+
MOMENTS	-564.9	+1370.2	- 102101e	+504.7	-323.0	+414.0	-638.0	+704.7	- 539.6	+66.8

Ð	867.1 0	E	G	0		
	1	156.5 -41	1,3 4	150.8"L	101.3'k	
1		Tan	and the second		this	
450	HA LION	1 - 50414 /	458.0	1 -704,7 -53	19.4	
12	-1540.2 - 15	12/2/11/2	ELS 4	10 10	2-51/1-12	
NX NX	8 4.0	8 9 9 9 9	8 =1	122.2 (9	8	
	= 1834.7" = 1	22.2' = 3	19.2'	=	404.0 "	
DE	BIGN MAX M	1,5 /1370	0.212)	AND M	AX MUT IN	9.5" SLAR /450.8"
		C.F.	1			
M	5 = 1370.2		1 1000-	1211		
LS M.	$M_{V} = 0.15 M_{V} =$.25/1370.2	1 24	2.6'K		
W	1 = 450.9"			onarik		
C	$S. M_{0} = 0.60 M_{0}$ $S. M_{*}^{*} = 40 M_{0}^{*}$	= ,60(45	50.8) = 1	240.5 80.2 K		
		D		80.5		
TZ	EINFORCEMENT	DESIGN				
Step	Description	M	U LAA S	N	WS	
	14	C.D.	18	Cis.	DI DI K	
1	WINNENTS (MU)	1027.7	342.6	270.5	100.5	
	EFFECTIVE STEEL	18.575-2	9.5-,75 整	9.595-2	011127-4	
2	Assume #7top, #56d	17.3125	8-3/25"	8.4510	CHELIN	
2	DESIGN MOMENTS	INI A'K	28071K	ZAM LIK	710.212	
2	Mn= Mu/\$ (0=.90)	11701	200.1	200.16	44.5	
4	R= Min (b=180")	254.0 ps.	367.3 psi	281. Spsi	187.6Fri	
E	Reinf. ratio, P	CALITO	00/00	00492	00220	Ref. : "Design of
2	(From Table A.Sof NDD)	1.00430	.00641	,00101	.00320	Concrete Structures;"
6	Steel Area	13.45 in2	9.59 in2	7.4012	4.86	No Ison, Darwin, Dolan.
	Min Steel Aren	500.2	7 10.2	7 40.2	2 60.2	2001
T	As, min = .0018 bt	Dellin	2.081	Devoir	2008 IN-	
8	Number of bars	23	16	17	12	
0	Min. num. of bors	E	10	10	10	
1	Nmin = 0/2t	3	10	10	10	
10	Spacing of bars	7.5"	11	10.5"	15"	
	FILAL	#70-1	17011"		111.0-1	
11	REINFORCEMENT	te 7.5 a	1011 0.0.	+6@ 10.5ac	=6 @ 15 0.0	

POST - TENSIONED 2- WAY FLAT PLATE WITH SHEAR CAPS 3 24×24 cols + Shear caps fr = 5000 psi fy = 60 ksi fp = 270 ksi = 100 tendons AT = 0,153 m2 36'= mux SPAN STAN/DEPTH RATD = 45 36'×12"/1 = 9.6" ⇒ try t = 9.75 - 71/4" 934 T11/4" 1" clear top & bottom for 2 hr fire DESIGN THIS a= 9.75 - 2(1.25) = 7.25" 301 LOADS DL = 9.75" slab = 122 psf Ceil/mech = 15 psf Fart. = 10 psf LL = 100 psf30 Bandled Tendons in N-S dir. Uniform " E-W dir $W_{\text{pre}} = 8.9 (122 \text{ psf}) = 110 \text{ psf}$ $W_{\text{pet}} = 247 - 110 = 137 \text{ psf}$ $A = (9.75")(12") = 117 \text{ in}^2$ Note: I DEAL B/C OTHER N-S BAYS ARE SHORTER $\frac{Both Spans}{Mpre} = \frac{(.10)(.30)^2}{8} = 12.38'^k$ $F = \frac{Mpre}{a} = \frac{12.88(.12)}{7.25} = 20.48 k$ $F/A = \frac{20.48^k/(.00)}{117.10^2} = 175.1 psi$ Bundles @ strips in N-S dir ! F= (20.4844) (30')= 614.5k $M_0 = \frac{(137)(30)^2}{8} = 15.41^{12}$ M= ,65(15,41) = 10.02 1k M* = .35 (15.41) = 5.391K

Appendix D – Two-Way Post-Tensioned Flat Slab with Shear Caps Calculations

Check avg. Stresses
$f = \frac{f}{A} + \frac{m_{\rm in}}{s}$
$S = 2(9.75)^2 = 190.13 \text{ in}^3$
Stress limits: Midspan : 6:3:172 = 424.3 ps: Stress limits: Midspan : 6:3:172 = 212.1 ps: f. =. 45F2 = 2250 ps:
M_{J} : $f = -175.1 pa \pm \frac{10.02(12)}{190.13} = 457.37424.3 MoGood!$
$Try t_{slab} = 10.25^{\circ}$
DLskb = 128 psf a= 10.25 - 2(1.25) = 7.75"
$W_{pre} = 0.9(128) = 115 \text{ psf}$ $W_{pre} = 253 - 115 = 138 \text{ psf}$
A= 10.25(12) = 12.3 ANZ
$M_{PTC} = \frac{(.115)(32)^2}{8} = 12.94^{1/4}$ $= 12.94^{1/2} = 12.94^{1/4}$ $= 12.94^{1/2} = 12.94^{1/4}$ $= 12.94^{1/2}$
$F_{A} = \frac{20.037(000)}{173.100} = 162.9 \text{ Psi}$ $F_{A} = \frac{20.037(000)}{173.100} = 162.9 \text{ Psi}$
Mo = .138(30) ² = 15.53'K
$M^{-} = .65(15,53) = 10.09^{1k}$ $M^{+} = .35(15,53) = 5.43^{1k}$
Check stresses:
S=2(10.25) = 210, 13 in 3 10.09(12) + 413, 3 psi 4 424.3 psi okv
M-: f= -162.9 = 210.13 = -739.1psi 4 2250 psi oku
$M^{+}: f = -162A \pm \frac{5.43(12)}{210.13} = \pm 1/47.2psi - 212.1psi okc$
Ny = 600.9k [270 ksi](0.153in2) = 14,5 -> USP 15 tendons each way

RI	GID STEEL	DESIGN				
LONDS CHO , D THE						
DL = -O(1(128) = 128 psf						
37.8 PSF						
	LL - 100) pof	. 1		11 0	
$W_v = 1.2(37.8) + 1.6(100) = 205.7 \text{ pet}$						
Mo = Wute #0 = .2054 (30)(30-2)2 = (02 gik						
$M_{v} = .65(6054)572.0$ $M_{v}^{+} = .35(1034) = .211.4^{1/k}$						
(S.M. = .75(392.5) = 294.4"						
MS. Mv = .25(392.5) = 98.112						
$M_{1}S_{2}M_{1}^{+} = \frac{160}{100}(211.4) = 1260$ $M_{1}S_{2}M_{1}^{+} = \frac{160}{100}(211.4) = 84.6$ k						
Assume #4 bars 1 41 - 1 41 +						
Step	Description	C.S.	U M.5	C.S.	10 M.S.	
1	Momentes, Mu	294.412	98.112	126.8×	84.6 K	
2	Depth, d	9	9	9	9	d= 10.2575-0.5
3	Dosign Morarts Mn = Mu/B	327.1 "K	109.012	140.9 12	94,01e	
4	Flex. Regist, Factor R = Ma/bd2	269.2 psi	89.700	104.40%	77.400	$b = \frac{30'(12)}{2} = 180''$
5	Reinf. ratio, p From Table A.S	.00464	,00151	FF100.	.00130	
6	Steel area, As As = ebd	7.52:12	2.45 in2	2.87112	2.1112	
7	Min Steel Areafini As min = . DOI86t	3.32:2	3.32.12	3.32.12	3,3212	
8	NUM of bars, N N=As/ASHS	25	aD	and	ID	Voe # 5 bars Ag(#5)= .31
9	Min num of bars Nmin = b/2t	9	9	9	9	
10	Spacing, S S= B/N	7"	16"	16"	16"	
()	FINAL REINF.	#5@7°c	#5@16"	#5016"	#5@16"	

Design Shear rap for purching shear

$$V = 4/z$$

 $d = 4/z$
 $d = 4$

Appendix E – Precast Hollowcore Plank on Steel Frame Calculations

DESIGN STREE GIRDERS
GIZPEZ WITH MAST LOAD: F2-F3 IN DEAMUINES
L 36' EAV TO NORTH
30' EAV TO SOUTH
TS LENGTH BY HOLLOWERE
PLANK GROUT
- FIXED (CONVECTIONS (IN MOMENT FRAME)
- WIZ COLS
WUL = 100 PSE
$$\left[\left(\frac{32}{2}\right)^{+}\left(\frac{72}{2}\right)^{2}\right] = 3.30$$
 klf
WL = 100 PSE $\left[\left(\frac{32}{2}\right)^{+}\left(\frac{72}{2}\right)^{2}\right] = 3.30$ klf
WL = 100 PSE $\left[\left(\frac{32}{2}\right)^{+}\left(\frac{72}{2}\right)^{2}\right] = 3.30$ klf
WL = 100 PSE $\left[\left(\frac{32}{2}\right)^{+}\left(\frac{72}{2}\right)^{2}\right] = 4.90$ klf
PLANK Z'ITHEM COLVER PRENTING
WL = 1.2(4.40 + PLAND) + 1.6(3.50) = 11.78 klf
SELF WT
GUESS
MUT = WL² = (11.28)(30)
12 = 324G K
Lu (fully Daced) = 0', SO MO' WILL NOT GOVCAN
TRY WZ X XH (I = 2850 in⁴, ØMm = 915⁻¹⁴)
CL = 1/360 = $\frac{30(r)}{5(0)} = 1.0^{11}$
CL = $\frac{50(r)}{240} = \frac{30(r)}{240} = 1.5^{11}$
CT = $\frac{30(r)}{240} = 1.5^{11}$
OT = $\frac{30(r)}{240} = \frac{30(r)}{240} = 1.5^{11}$
OT = $\frac{100(r)}{240} = \frac{30(r)}{240} = \frac{100(r)}{240} = 1.5^{11}$
OT = $\frac{100(r)}{240} = \frac{100(r)}{240} =$

